In vivo fate of phosphorothioate antisense oligodeoxynucleotides: predominant uptake by scavenger receptors on endothelial liver cells.

نویسندگان

  • M K Bijsterbosch
  • M Manoharan
  • E T Rump
  • R L De Vrueh
  • R van Veghel
  • K L Tivel
  • E A Biessen
  • C F Bennett
  • P D Cook
  • T J van Berkel
چکیده

Systemically administered phosphorothioate antisense oligodeoxynucleotides can specifically affect the expression of their target genes, which affords an exciting new strategy for therapeutic intervention. Earlier studies point to a major role of the liver in the disposition of these oligonucleotides. The aim of the present study was to identify the cell type(s) responsible for the liver uptake of phosphorothioate oligodeoxynucleotides and to examine the mechanisms involved. In our study we used ISIS-3082, a phosphorothioate antisense oligodeoxynucleotide specific for murine ICAM-1. Intravenously injected [3H]ISIS-3082 (dose: 1 mg/kg) was cleared from the circulation of rats with a half-life of 23.3+/-3.8 min. At 90 min after injection (>90% of [3H]ISIS-3082 cleared), the liver contained the most radioactivity, whereas the second-highest amount was recovered in the kidneys (40.5+/-1.4% and 17.9+/-1.3% of the dose, respectively). Of the remaining tissues, only spleen and bone marrow actively accumulated [3H]ISIS-3082. By injecting different doses of [3H]ISIS-3082, it was found that uptake by liver, spleen, bone marrow, and kidneys is saturable, which points to a receptor-mediated process. Subcellular fractionation of the liver indicates that ISIS-3082 is internalized and delivered to the lysosomes. Liver uptake occurs mainly (for 56.1+/-3.0%) by endothelial cells, whereas parenchymal and Kupffer cells account for 39.6+/-4.5 and 4.3+/-1.7% of the total liver uptake, respectively. Preinjection of polyinosinic acid substantially reduced uptake by liver and bone marrow, whereas polyadenylic acid was ineffective, which indicates that in these tissues scavenger receptors are involved in uptake. Polyadenylic acid, but not polyinosinic acid, reduced uptake by kidneys, which suggests renal uptake by scavenger receptors different from those in the liver. We conclude that scavenger receptors on rat liver endothelial cells play a predominant role in the plasma clearance of ISIS-3082. As scavenger receptors are also expressed on human endothelial liver cells, our findings are probably highly relevant for the therapeutic application of phosphorothioate oligodeoxynucleotides in humans. If the target gene is not localized in endothelial liver cells, the therapeutic effectiveness might be improved by developing delivery strategies that redirect the oligonucleotides to the actual target cells.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Liver uptake of phosphodiester oligodeoxynucleotides is mediated by scavenger receptors.

The therapeutic activity of antisense oligodeoxynucleotides (ODNs) often is impaired due to premature degradation and poor ability to reach the (intra)cellular target. In this study, we addressed the in vivo fate of ODNs and characterized the major sites responsible for the clearance of intravenously injected phosphodiester ODN. On injection into rats, 32P-ODNs (miscellaneous sequences and GT-c...

متن کامل

Modulation of plasma protein binding and in vivo liver cell uptake of phosphorothioate oligodeoxynucleotides by cholesterol conjugation.

Several studies have shown improved efficacy of cholesteryl-conjugated phosphorothioate antisense oligodeoxynucleotides. To gain insight into the mechanisms of the improved efficacy in vivo, we investigated the disposition of ISIS-9388, the 3'-cholesterol analog of the ICAM-1-specific phosphorothioate oligodeoxynucleotide ISIS-3082, in rats. Intravenously injected [(3)H]ISIS-9388 was cleared fr...

متن کامل

bis-Cholesteryl-conjugated phosphorothioate oligodeoxynucleotides are highly selectively taken up by the liver.

We previously modulated, by conjugating a single cholesterol, plasma protein binding and liver cell uptake of a phosphorothioate oligodeoxynucleotide (PS-ODN). In this study, we investigated the biological fate of a PS-ODN, denoted ISIS-9389 (3',5'-bis-cholesteryl-conjugated ISIS 3082), provided with two cholesteryl moieties. After intravenous injection of into rats, [(3)H]ISIS-9389 was cleared...

متن کامل

Cell-surface perturbations of the epidermal growth factor and vascular endothelial growth factor receptors by phosphorothioate oligodeoxynucleotides.

Antisense oligodeoxynucleotides offer potential as therapeutic agents to inhibit gene expression. Recent evidence indicates that oligodeoxynucleotides designed to target specific nucleic acid sequences can interact nonspecifically with proteins. This report describes the interactive capabilities of phosphorothioate oligodeoxynucleotides of defined sequence and length with two essential protein ...

متن کامل

Phosphorothioate oligodeoxynucleotides distribute similarly in class A scavenger receptor knockout and wild-type mice.

It has been suggested that binding of phosphorothioate oligodeoxynucleotides (P=S ODNs) to macrophage scavenger receptors (SR-AI/II) is the primary mechanism of P=S ODN uptake into cells in vivo. To address the role of scavenger receptors in P=S ODN distribution in vivo, several pharmacokinetic and pharmacological parameters were compared in tissues from scavenger receptor knockout mice (SR-A-/...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nucleic acids research

دوره 25 16  شماره 

صفحات  -

تاریخ انتشار 1997